Using Abstraction and Encapsulation to make sandwiches Rule!

Encapsulation (in kaps(y)a'laSH(a)n) : a group of related methods, properties, logic, and other
members treated as a single object.

Abstraction (ab 'strakSH(a)n) : the process by which everything other than the relevant data about an
object is hidden in order to simplify use and increase maintainability.

There's a great <a>exercise used when teaching programming that demonstrates how important it
is to create precise instructions. The exercise asks the participant to make explicit instructions about
how to make a peanut butter and jelly sandwich, and then another person attempts to follow that plan
to the letter - generally with highly entertaining results. This exercise can be a lot of fun to work
through, whether you're at <a>Harvard or working with <a>kids, and it's a great way to learn
how important it is to describe things well.

http://static.zerorobotics.mit.edu/docs/team-activities/ProgrammingPeanutButterAndlelly.pdf
https://www.youtube.com/watch?v=XWe4iohhmlw

https://www.youtube.com/watch?v=cDA3_5982h8

What it also demonstrates is the human tendency to unconsciously group things together and think of
multiple steps as a single task - abstracting the details of execution so the caller doesn't need to worry
about them. Rule Application creators can use that same human tendency to make the Applications
easier to use and maintain.

So how do you make a sandwich?

Let's start at the most inclusive direction - Make a Sandwich. Whatever is requesting that sandwich
really doesn't need to have any knowledge about the trivial details of how that happens - it just wants
the delicious output of the process.

The average person's instructions for the construction of that sandwich may look something like this:

Gather bread, peanut butter, jelly, and a knife
Remove and lay out two slices of bread
Spread peanut butter on one slice

Spread jelly on the other slice

Put the two slices together

Eat the glorious result (optional)

ok wWwnNPE

Logically, everyone reading this article will understand these instructions and be able to interpret them
to produce a delightful snack. However, each step listed is already an abstracted version of what that
step requires. When building a Rule App, you need every step to be absolutely explicit and detailed.

No really, how do you make a sandwich?
Let’s go one level of specificity down from there:

1. Gather bread, peanut butter, jelly, and a knife
a. Bread must be baked
Bread must be sliced into 1/2" thick slices cut perpendicular to the longest axis of the bread
Peanut Butter must be in a jar with safety seal removed
Jelly must be in a jar
Knife should be a dull butter-style knife
2. Remove and lay out two slices of bread
a. Bread container must be opened
b. Bread should be places with the shortest axes perpendicular to the surface of the table
c. Slices should be next to each other, in the same orientation, and not overlapping
3. Spread peanut butter on one slice
a. Jar of peanut butter must be opened
b. Requires indication of quantity to use
c. Spreading must be on the upward-facing large sides of slice
d. PBshould be distributed in an even layer
e. Knife should be used for this task, held by handle
4. Spread jelly on the other slice
a. Jar of jelly must be opened
Requires indication of quantity to use
Spreading must be on one upward-facing large sides of slice without peanut butter
Jelly should be distributed in an even layer
Woah, you’re actually reading through all these? Impressive.
f. Knife should be used for this task, held by handle
5. Put the two slices together
a. Jelly- and Peanut Butter-covered sides should face each other
b. After combining, sandwich should be laid flat back down

® oo o

® oo o

Is it more specific? Heck yes. Is specific enough for a system with zero context to successfully execute?
Nope!

Each one of those sub-items could be further clarified. And each of those... well, you get the point.
Each step is an abstraction of the actual process needed - which makes it easier to understand for
humans, but that’s not enough for a Rule App.

Fine, let’s pretend | made the most precise set of instructions ever. Now what?

At the end of all our elaboration of listing out each precise step, we end up with a giant list of incredibly
precise steps of how to do everything (which is exactly what our application needs), and our instructions
to make a sandwich include hundreds of steps. Will it get the right product every time? You bet! Will
anyone in their right mind want to maintain it? Highly doubtful.

Why’d | go through all that elaborating then?

How do we get the level of precision required by rule applications while having something that's actually
maintainable? By borrowing from human nature and abstracting the steps back into logical groups
within the Rule Application! Folders, helper RuleSets, Entity Context and Vocabulary are all tools that
we can use to shift this giant list of logic into groups that are easier to understand and read through for
the humans that will actually be maintaining the application.

What was that you said about Entity Context?

One of the ways that you can group logic within a Rule App is by encapsulating the logic within its own
entity context. Let the ingredients entity 'own' their respective logic of how to open the container. Let
the knife Entity handle the intricacies of spreading material. Moving the logic into groups (Explicit
RuleSets or Folders of RuleSets) and placing those groups into the context of item they interact with
(Entities) allows the higher-order processes responsible for making the sandwich (Controller and helper
parent RuleSets) to just tell the Peanut Butter to open, and the knife to spread the PB on that bread.
Seems a whole lot easier to understand and maintain that sticking everything at the top level, doesn't it?

By grouping the details of logical steps into groups and Explicit RuleSets and encapsulating them into the
context of the Entities they manipulate, we create a rule application that is drastically more
understandable and maintainable. If you can't encapsulate the logic into child Entities, even using
folders to organize RuleSets within the parent can help simplify management of a complex Rule App.

So go forth, and be not afraid to Encapsulate! You - and especially you in 3 years - will thank you.

Sandwich
4 | | MakeSandwichController
| Execute Bread.Bread_Prep_Controller
| Execute PeanutButter.PeanutButter Retrieve
| Execute Jelly.Jelly_Retrieve
4 Steps
|| GatherMaterials
4 | | PrepareMaterials
| Execute Bread.Bread Prep_Controller
[*=| RetrievePeanutButter
[2-| RetrieveJelly
[*=] RetrieveKnife
|| SpreadPeanutButter
|| Spreadlelly
.| FinishSandwich
Bread
4 | | Bread_Prep_Controller
| Execute Bread_Prep_Retrieve
| Execute Bread_Prep_Open
| Execute Bread Prep RemoveSlice
| Execute Bread_Prep_LayFlat
| Execute Bread Prep RemoveSlice
| Execute Bread_Prep_LayFlat
| Execute Bread Prep Close
4 Prep_Helpers
|| Bread_Prep_Retrieve
|| Bread_Prep_Open
.| Bread_Prep_RemoveSlice
|| Bread_Prep_LayFlat
.| Bread_Prep_Close
PeanutButter
; PeanutButter_Retrieve
|_| PeanutButter Open
; PeanutButter Close
Jelly
| Jelly_Retrieve
|| Jelly Open
| Jelly_Close

