Integrating Rule Apps into your CI/CD Pipeline

Welcome back! For those of you just joining us, this is part 2 of a pair of blog posts discussing CI/CD with
Rule Apps — you can find the previous post here (url of previous post).

Part 2: irCatalog Check-in triggered, Catalog-sourced Rule App, Promoting pipeline

Scenario:

For this sample, we’re going to use a rule app that is stored in an instance of the InRule Repository tool
(irCatalog). We have an accompanying GitHub repository containing all our test scenarios, and we want
to run the new version of a rule application against all those tests whenever one is checked into the
“Catalog. If all tests pass, we then want to promote the rule app from one instance of irCatalog to the
next one down the line.

Ready? Let’s take a meander through it.

Trigger from irCatalog Check-in

Remember that irCatalogExtension Helper folder we skipped over last time? This is where that project
comes into play. While the irCatalog service does not have a formal integration hook, we are able to
leverage the WCF Endpoint Behavior configuration to add a Behavior Extension that injects a Parameter
Inspector into the request/response pipeline. This gives us visibility into requests as they’re entering the
“Catalog, and responses as they are returned. We can inspect those as they pass and, if desired,
manually trigger our pipeline from there.

nt, IEndpointBehavior

CreateBehavior()

e BehaviorType =>

ApplyDispatchBehavior(ServiceEndpoint endpoint, EndpointDispatcher endpointDispatcher)
(operation endpointDispatcher.DispatchRuntime.Operations)

operation.ParameterInspectors.Add(RuleApplicationParameterInspector());

In the CheckinRequestListener project, the RuleApplicationParameterinspector is where the application
logic lives; that structure can be used as a foundation for creating custom assemblies. The essence of the

logic is that when a check-in or an apply label request completes, it may call out to Azure DevOps to
trigger the pipeline to execute.

: IParameterInspector

BeforeCall(operationName, [1 inputs)

AfterCall(operationName, [] outputs, returnValue, correlationState)

.Equals(operationName, "CheckinRuleApp"”, StringComparison.OrdinallgnoreCase))
response = (InRule.Repository.Service.Data.Responses.Ct nRuleApy ponse)returnValue;

ruleApp = RuleAppData he.Add(response.RuleAppXml.Xml);

(!IsLabelTriggerConfigured() && IsRuleAppConfiguredToTriggerPipeline(ruleApp.Name))
TriggerPipeline(ruleApp);

(ing.Equals(operationName, y ", StringComparison.OrdinallgnoreCase) && IslLabelTriggerConfigured())

label = correlationState.ToString().Split('|')[e];
(IsLabelConfiguredToTriggerPipeline(label))

ruleAppGuid = correlationState.ToString().Split('|')[1];
ruleApp = RuleAppDataCache.Get(ruleAppGuid);

(IsRuleAppConfiguredToTriggerPipeline(ruleApp.Name))
TriggerPipeline(ruleApp);

tion ex)

e.WriteLine("Error in Rule or fol g chec - + ex.Message);

In order to trigger the pipeline, the request needs to contain an authentication token from Azure; the
process to retrieve that is outlined here (https://docs.microsoft.com/en-us/azure/devops/integrate/get-
started/authentication/pats?view=azure-devops). There are several other pieces of information
required, including the Pipeline Organization, Project, and Pipeline ID (hint: the Pipeline ID can be found
in the URL of the Azure DevOps Portal when the pipeline is open).

€ Aaure Devops

User settings Personal Access Tokens

General

MewToken) Revoke Edit Regenerate

About

@ BuildToken, o e 3072020

Usage

Security

ers

Alternate creder

SSH public keys

In the Catalog Extension project, the DevOps pipeline queue request is abstracted into the
AxureDevOpsApiHelper class. More information about what else that APl supports is available here
(https://docs.microsoft.com/en-us/rest/api/azure/devops/build/builds/queue?view=azure-devops-rest-
5.0#definitionreference). The readme in the project repo
(https://github.com/InRule/DemoRuleCICDPipeline/tree/master/Helpers/CheckinRequestListener%20Ir
CatalogExtension/CheckinRequestListener) contains instructions about how to modify the web.config to

https://docs.microsoft.com/en-us/azure/devops/integrate/get-started/authentication/pats?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/integrate/get-started/authentication/pats?view=azure-devops
https://docs.microsoft.com/en-us/rest/api/azure/devops/build/builds/queue?view=azure-devops-rest-5.0#definitionreference
https://docs.microsoft.com/en-us/rest/api/azure/devops/build/builds/queue?view=azure-devops-rest-5.0#definitionreference
https://github.com/InRule/DemoRuleCICDPipeline/tree/master/Helpers/CheckinRequestListener%20IrCatalogExtension/CheckinRequestListener
https://github.com/InRule/DemoRuleCICDPipeline/tree/master/Helpers/CheckinRequestListener%20IrCatalogExtension/CheckinRequestListener

enable the custom extension to WCF behavior, and also for the extension to have the configuration
information it needs to initiate the DevOps pipeline.

Pipeline Structure

Like the pipeline discussed in the previous post in this series (Insert link here), this pipeline is structured
with a template to make it reusable. We’re also passing parameters into the template indicating which
rule app we’re working with, as well as which source and destination “Catalogs we want to use. Since
we’re manually triggering it with the irCatalog extension, we do not have any automatic triggers
configured on this one.

trigger: none

jobs:
- template: catalogSourced-TestAndPromote.yml
parameters:
RuleAppName: MultiplicationApp
SourceCatalogName: Dev
DestinationCatalogName: UAT

Catalog Credentials

As before, because we want to avoid storing credentials somewhere unsafe, we’re keeping them in
Library Variable Groups. Since we’re going to be pulling in two Variable Groups at the same time in the
pipeline (one for source and one for destination), we need to create “Source” and “Dest” prefixed
variables and groups to avoid name collisions when importing multiple groups into the same job.

Library SourceCatCredsForDev Library DestCatCredsForUAT

. -) - =
Variable group [y Clone © Security @ Helo yariapte group [y Clone QO Security (@ Help
Properties Properties
Variable group name Variable group name
SourceCatCredsForDev DestCatCredsForUAT
Description Description
m Allow access to all pipelines m Allow access to all pipelines
'f:. :',' Link secrets from an Azure key vault as variables (0 ‘. ‘ Link secrets from an Azure key vault as variables (1)
Variables Variables
MName T Value Name T Value
SourceCatalogPassword DestinationCatalogPassword ~~ swwemwesn
SourceCatalogUri https:// DestinationCatalogUri https://ca
SourceCatalogUsername Admin DestinationCatalogUsername Admin

Our job to perform the tests here is nearly identical to the previous post, but rather than providing a file
path for the rule app to test, we’re providing the “Catalog credentials that we retrieved from the

Credential Store. One unfortunate note here is that Azure DevOps has an open issue
(https://github.com/MicrosoftDocs/vsts-docs/issues/3702) that Variable Groups cannot be imported
using a name containing a variable substitution. In this case, the template only works with a fixed pair of
catalog credential library variable group names.

- job: Test_${{ parameters.RuledppHame }}
pool:

vinlmage: 'windows-2013"
variables:
#- group: SourceCatCredsFors(SourceCataloghame) This is not yet supported - https://github.com/MicrosoftDocs/vsts-docs/issues/3762
- group: SourceCatCredsForDev

- name: RuleAppMame
value: ${{ parameters.RuleAppName }}
name: RuleTestFolder
value: $(System.DefaulthorkingDirectory)\catalogSourced-TestAndPromote TestSuites\${RuleApphame)
steps:
- task: DownloadSecureFilegl
inputs:
secureFile: 'InRulelicense.xml’
- task: CopyFiles@2
inputs:
SourceFolder: '$(System.DefaultWorkingDirectory)/Helpers/ExecuteTests"
Contents: %+
TargetFolder: '$(Agent.TempDirectory)'
Overiirite: true

- script: |
for %%i in ("$(RuleTestFolder)*.testsuite") do (echo Running TestSuitePath:"&%i")
for %%i in ("$(RuleTestFolder)*.testsuite") do (.\ExecuteTests.exe -TestSuitePath:"¥%i" -CatUri:"${SourceCataloglri)” -Catlsername:"$(SourceCataloglsername)” -CatPassword:"$(SourceCatalogPassword)”

-CatRulefpphame :"§(RuleApphana) ")
displayName: 'Run Tests on $(RuleAppName) Rule App'
workingbirectory: §(Agent.TempDirectory)

@ Run Tests on MultiplicationApp Rule App

Task Command line
Description : Run a command line script using Bash on Linux and macO5 and cmd.exe on Windows
Version @ 2.151.1
: Microsoft Corporation
microsoft.com/azure/devops/pipelines/tasks/utility/command-1ine

Running TestSuitePath:"d:\a\l\s\catalogSourced-TestAndPromote TestSuites\MultiplicationApp\MultiplicationApp Full.testsuite"
Running TestSuitePath:™d:\a\l\s\catalogSourced-TestAndPromote TestSuites\MultiplicationApp\MultiplicationApp_ MNegativeNumbers.testsuite™
Loading Rule App MultiplicatiomApp from hitps:// /service.svc

Using Test Suite d:\a\l\s\catalogSourced-TestAndPromote TestSuites\MultiplicationApp\MultiplicationApp Full.testsuite

PASS: TestMultiply-5x5

PASS: TestMultiply-10x1@

PASS: TestWithRounding

Loading Rule App MultiplicationApp from hitps:// /service.svc

Using Test Suite d:\a\l\s\catalogSourced-TestAndPromote TestSuites\MultiplicationApp\MultiplicationApp_NegativeNumbers.testsuite
PASS: SingleNegativeNumber

PAS5: Test2

Promote

Once we’ve tested and validated that all is well, we’re now ready to promote between catalogs. This is
performed in fundamentally the same way as the previous post’s irDistribution request, but with a
different command line tool and many more parameters to specify connection information for the two
“Catalogs.

https://github.com/MicrosoftDocs/vsts-docs/issues/3702

- job: Promote_${{ parameters.RuleApphame }}
dependson: Test_$({ paraneters.RuleAppiane }
pool:

vnlnage: 'windows-2813'
variables:

r$(SourceCataloghame) This is not yet supported
tinationCataloghame) This is not yet supported - I

hub. com/MicrosoftDocs /v
github. com/Microsoftlecs

value: ${{ parameters,RuleAppName }
steps:
- task: DownloadSecursfile@l
inputs:
securefile: InRulelicense.xml’
- task: CopyFilesfi2
inputs
Sourcefolder: '${System.DefaultWorkingdirectory) Helpers/PromateRuleApp’
Contents: "%

TargetFal
Overiir
- script: |
echo Promating Rule App from $(SourceCataloglri) to $(DestinationCataloglri
.\PromoteRuleApp.exe -RuleAppName:“$(RuleAppName)” -Comment:"Publish from command line tool" -SrcCatUri:"$(SourceCatalogUri)/core” -SrcatUser:"$(SourceCataloglsername)” -SrcCatPass:”$(SourceCatalogPassword)”
-DestCatUri:"$(DestinationCatalogUri)/core” -DestCatUser:"§(DestinationCatalogUsername)” -DestCatPass:"$(DestinatienCatalogPassword)”
displayName: 'Promote ${RuleAppName)
workingDirectory: $(Agent.TempDirectory)

i '${Agent.TempDirectory)’
true

@ Promote MultiplicationApp

-
Task : Command 1ine

Description : Run @ command line script using Bash on Linux and mac05 and cmd.exe on Windows
Version : 2.151.1

Author : Microsoft Corporation

Help ¢ https://docs.microsoft.com/azure/devops/pipelines/tasks/utility/command-1ine

Starting Command Output

Promoting Rule App from https:// /service.svc to https:// fservice.svc
Success!

You Did It (Again)!

As before, you can view the full pipeline and GitHub structure of the catalogSourced-TestAndPromote-
pipeline at https://github.com/InRule/DemoRuleCICDPipeline. This is just one example of the different
ways these pieces can be put together. Feel free to adapt the elements of this exercise to whatever your
needs are, and build out a CI/CD pipeline that give you exactly the functionality you need in your
organization.

Was this helpful for you? What would you do differently? Let us know in the comments below!

https://github.com/InRule/DemoRuleCICDPipeline

