
Integrating Rule Apps into your CI/CD Pipeline 

Welcome back! For those of you just joining us, this is part 2 of a pair of blog posts discussing CI/CD with 

Rule Apps – you can find the previous post here (url of previous post). 

 

Part 2: irCatalog Check-in triggered, Catalog-sourced Rule App, Promoting pipeline 

 

Scenario: 

For this sample, we’re going to use a rule app that is stored in an instance of the InRule Repository tool 

(irCatalog). We have an accompanying GitHub repository containing all our test scenarios, and we want 

to run the new version of a rule application against all those tests whenever one is checked into the 

`Catalog. If all tests pass, we then want to promote the rule app from one instance of irCatalog to the 

next one down the line. 

Ready? Let’s take a meander through it. 

 

Trigger from irCatalog Check-in 

Remember that irCatalogExtension Helper folder we skipped over last time? This is where that project 

comes into play. While the irCatalog service does not have a formal integration hook, we are able to 

leverage the WCF Endpoint Behavior configuration to add a Behavior Extension that injects a Parameter 

Inspector into the request/response pipeline. This gives us visibility into requests as they’re entering the 

`Catalog, and responses as they are returned. We can inspect those as they pass and, if desired, 

manually trigger our pipeline from there. 

 

In the CheckinRequestListener project, the RuleApplicationParameterInspector is where the application 

logic lives; that structure can be used as a foundation for creating custom assemblies. The essence of the 



logic is that when a check-in or an apply label request completes, it may call out to Azure DevOps to 

trigger the pipeline to execute. 

 

In order to trigger the pipeline, the request needs to contain an authentication token from Azure; the 

process to retrieve that is outlined here (https://docs.microsoft.com/en-us/azure/devops/integrate/get-

started/authentication/pats?view=azure-devops). There are several other pieces of information 

required, including the Pipeline Organization, Project, and Pipeline ID (hint: the Pipeline ID can be found 

in the URL of the Azure DevOps Portal when the pipeline is open). 

 

In the Catalog Extension project, the DevOps pipeline queue request is abstracted into the 

AxureDevOpsApiHelper class. More information about what else that API supports is available here 

(https://docs.microsoft.com/en-us/rest/api/azure/devops/build/builds/queue?view=azure-devops-rest-

5.0#definitionreference). The readme in the project repo 

(https://github.com/InRule/DemoRuleCICDPipeline/tree/master/Helpers/CheckinRequestListener%20Ir

CatalogExtension/CheckinRequestListener) contains instructions about how to modify the web.config to 

https://docs.microsoft.com/en-us/azure/devops/integrate/get-started/authentication/pats?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/integrate/get-started/authentication/pats?view=azure-devops
https://docs.microsoft.com/en-us/rest/api/azure/devops/build/builds/queue?view=azure-devops-rest-5.0#definitionreference
https://docs.microsoft.com/en-us/rest/api/azure/devops/build/builds/queue?view=azure-devops-rest-5.0#definitionreference
https://github.com/InRule/DemoRuleCICDPipeline/tree/master/Helpers/CheckinRequestListener%20IrCatalogExtension/CheckinRequestListener
https://github.com/InRule/DemoRuleCICDPipeline/tree/master/Helpers/CheckinRequestListener%20IrCatalogExtension/CheckinRequestListener


enable the custom extension to WCF behavior, and also for the extension to have the configuration 

information it needs to initiate the DevOps pipeline. 

 

Pipeline Structure 

Like the pipeline discussed in the previous post in this series (Insert link here), this pipeline is structured 

with a template to make it reusable. We’re also passing parameters into the template indicating which 

rule app we’re working with, as well as which source and destination `Catalogs we want to use. Since 

we’re manually triggering it with the irCatalog extension, we do not have any automatic triggers 

configured on this one. 

 

 

Catalog Credentials 

As before, because we want to avoid storing credentials somewhere unsafe, we’re keeping them in 

Library Variable Groups. Since we’re going to be pulling in two Variable Groups at the same time in the 

pipeline (one for source and one for destination), we need to create “Source” and “Dest” prefixed 

variables and groups to avoid name collisions when importing multiple groups into the same job. 

 

 

Test 

Our job to perform the tests here is nearly identical to the previous post, but rather than providing a file 

path for the rule app to test, we’re providing the `Catalog credentials that we retrieved from the 



Credential Store. One unfortunate note here is that Azure DevOps has an open issue 

(https://github.com/MicrosoftDocs/vsts-docs/issues/3702) that Variable Groups cannot be imported 

using a name containing a variable substitution. In this case, the template only works with a fixed pair of 

catalog credential library variable group names. 

 

 

 

Promote 

Once we’ve tested and validated that all is well, we’re now ready to promote between catalogs. This is 

performed in fundamentally the same way as the previous post’s irDistribution request, but with a 

different command line tool and many more parameters to specify connection information for the two 

`Catalogs. 

https://github.com/MicrosoftDocs/vsts-docs/issues/3702


 

 

 

You Did It (Again)! 

As before, you can view the full pipeline and GitHub structure of the catalogSourced-TestAndPromote-

pipeline at https://github.com/InRule/DemoRuleCICDPipeline. This is just one example of the different 

ways these pieces can be put together. Feel free to adapt the elements of this exercise to whatever your 

needs are, and build out a CI/CD pipeline that give you exactly the functionality you need in your 

organization. 

Was this helpful for you? What would you do differently? Let us know in the comments below! 

https://github.com/InRule/DemoRuleCICDPipeline

