
Restroom Monitor Mark II
Have you ever found yourself in need of answering nature’s
secondary call, walking across the office to heed it, only to find that
all the stalls are in use? <sarcasm>Being situated at the far end of the
office, this was a very serious issue</sarcasm> — or at least I could
pretend it was to give myself enough of an excuse to do something
about it. If only there was a way to know, before ever leaving your
desk, if your call would be able to be answered in peace or not.

The concept is simple — determine the state of a restroom and put it
somewhere that it can be checked before heading over. A similar
system was installed many years ago using wireless, battery-powered
magnetic switches updating a website — but the very obvious boxes
were vandalized and required frequent maintenance. My objective
was to make something completely invisible (and that wouldn’t make
people uncomfortable — as restroom tracking could easily do) and
impervious to all but the most malicious sabotage — while providing a
seamless way to check the state.

The restrooms in question are private rooms (not just stalls), with
their own door and deadbolt — the door is always closed, and the
occupancy is determined by the position of the deadbolt, which also
has a red/green flag on the front of the door. One of the main
concerns about this project was doing it in such a way that it
wouldn’t make anyone uncomfortable — which would rapidly kill the
project — invasion of privacy lawsuits can be expensive. A wide
variety of methods of determining state were considered and
discarded:

Motion sensor — too much like a camera and bad for long visits,
tough to get a definitive state

Infrared sensor — too much like a camera and visible

Red/green color sensor looking at flag — too much like a camera

Magnetic switch or door hinge rotation sensor — can’t tell if the
door is locked or not

Deadbolt induction sensor — too fragile

•

•

•

•

•



Switch connected to a Bluetooth dongle to communicate — 
sitting inside a metal door frame could have connectivity issues
and the battery would have to be replaced

I eventually settled on a deadbolt switch designed specifically for
commercial installation, wired through the door frame to above the
dropped ceiling (isn’t drilling holes in the office walls fun?). The
switch sits inside the deadbolt pocket (so is not visible), is designed
for industrial usage (so won’t break with repeated use), and is wired
so that connectivity is perfect and there are no batteries (so requires
no maintenance). The switch I used was this deadbolt pocket switch.

Once you have a way to determine the state of the restroom, the next
step is to be able to read the state and send it somewhere. After
working with a couple different microcontrollers, I decided to use
the Spark Core because of the on-board WiFi and extremely easy
development/deployment process. After working with it, I could not
recommend it highly enough. After using the phone application to
connect it to wifi and tie it to your account, you update the
microcontroller by coding the application on their web IDE, then
pushing the automatically verified and compiled code to the device
over the public internet. It’s one step short of pure magic — and a
drastic and welcome change from the microcontrollers I’ve worked
with in the past. All that aside, it’s a simple task to have the Core

•

See how the pocket looks blocked by a silver panel? That’s the flipper of the switch.

https://medium.com/r/?url=http%3A%2F%2Fwww.americanlocksets.com%2Fsecuritron-lms1-latch-monitor-for-ansi-234-strike-spdt-3amp-p-6246.html
https://medium.com/r/?url=https%3A%2F%2Fstore.particle.io%2F%3Fproduct%3Dspark-core


receive input from the switch when it changes, then POST
notifications when it receives a changed state from the switch over
WiFi to a listening service endpoint. The microcontroller is wired
into power from a standard mains to USB power supply — again,
removing any dependency on battery maintenance.

I did experiment with using USB battery packs to see what kind of
battery life I could get — and ran into an interesting behavior. The
battery packs that automatically turn on do so by monitoring the
current dropped across the power pins. They also automatically turn
off when too low a draw is detected — assuming that nothing is
actually using the power. To conserve power draw, I disabled the
WiFi on the microcontroller when not actively transmitting a
changed switch state. While this did save energy, it also made the
power draw low enough (<10 mA) that the battery pack automatically
turned itself off thinking that nothing was plugged in. To get around
this, I wired up a transistor circuit to put a 50 millisecond draw
across the power pins (through a resistor) every 7 seconds (suggested
by this article). This was effective in keeping the device on — but the
biggest battery pack I could find (20,000 mAh) only lasted about a
week. In the interest of a platform requiring zero maintenance, I
instead decided to hook up a USB wall wart power supply and wire
that in rather than relying on battery power.

The two grey wires go through the wall, down the frame, and to the two door switches (via Molex

connectors for easier maintenance), the lower black cable is power from a USB wall wart, and the

upper black cable goes to the indicator lights — more on that later)

https://medium.com/r/?url=http%3A%2F%2Fwww.instructables.com%2Fid%2FUSB-External-Battery-Packs-on-Arduino-turns-OFF%2F


On the other side of the POST request, I have a Windows Service
running on a server, which is self-hosting both an HTTP endpoint for
the microcontroller to call with switch state changes, as well as a
Skype for Business platform and user endpoints representing each
restroom. Since everyone at Clarity is on our internal IM client all
day (Lync/Skype for Business), it’s logical that we’d look there for the
state of the restrooms. Since Skype for Business endpoints already
have a presence state associated with them that shows red/green, it’s
an absolutely perfect fit to have endpoints for each restroom that can
be Available or Busy, according to the status of the switch on the
physical room. Welcome to the internet of things (or places)!

So that’s all nice and dandy! Indicators on our computers getting the
state of the restroom — that seems good enough. Yea, I wasn’t happy
with “good enough” either — it just wasn’t quite over-the-top enough
yet. Clearly, more was needed.

I printed 3D models of toilets (can I just say how much I love the
previous 6 words?) on the office 3D printer (MakerBot 2) using clear
plastic filament, and embedded LED lights into the back of them (hot
glue to the rescue). Since the microcontroller already knows the state
of the switches and is able to put out a very convenient 5 volt current
that can drive the LEDs, it was a simple task to wire up the
translucent toilets to lit LEDs indicating their respective state — 
functioning as remote physical indicators for the rooms that could
be glanced at before heading down the hallway to the doors
themselves. As a side note, I used an Ethernet cable to go from the
microcontroller to the RGB LEDs — 3 power sinks per light plus one
shared voltage source needed 7 wires to run to the models, and
Ethernet cables are a very convenient 8 strands, and are easily

Don’t ask how a restroom can be ‘Steeled’. You don’t want to know.



available in an office. I wired up female connectors from Ethernet
‘extension’ cable to both ends, so that the light is easy to disconnect
and can use standard Ethernet cables of whatever length is needed to
run the distance without having to re-solder the pins. In the picture
above, it’s the upper black wire that I said I would mention later.

Next, since the Skype for Business endpoints that were showing the
presence for the restrooms already support IM very easily (and were
coming in to an application that I controlled), why not allow the
restroom endpoints to have conversations? I added the ability for the
endpoints to respond to inquiries about usage for the day with some
basic statistics (from the aforementioned state change data), suggest
places for lunch (randomized, suggesting 3 different cuisines from a
database of over 50 places in the immediate vicinity), and tell jokes
(all of them awful — from a database collection of several thousand).

Some people seem to have a thing about using a restroom when the
seat still carries warmth from the last occupant. To accommodate
those folks, I added in a ‘cool-down’ period, based on how long it eas
occupied. Y’know, because it was absolutely necessary.

Pay no mind to the colorful spaghetti behind the toilet bowls…



Finally, since data was getting sent to the service anyway with each
switch change, I set up a database that the historical changes could
be written to. This way, we can compile all sorts of utterly useless
statistics about restroom usage, preference between the two, peak
times of day, etc. What better information is there to offer at
quarterly meetings?

You have no idea how many terrible jokes there are out there. So. Many.



And with that, the Pooper Snooper Mark II (er… Restroom Monitor)
was born.

, permalink

. . .

Originally published at blogs.claritycon.com on July 20, 2015.

There’s got to be some justifiable reason to do this. I just don’t know what it is.

https://medium.com/r/?url=http%3A%2F%2Fblogs.claritycon.com%2Fblog%2F2015%2F07%2Frestroom-monitor-mark-ii%2F
https://medium.com/r/?url=http%3A%2F%2Fblogs.claritycon.com%2Fblog%2F2015%2F07%2Frestroom-monitor-mark-ii%2F

