Merging Rules With... Other Rules?

Introducing the irAuthor Merge Extension

What is a merge tool?

While InRule is designed to empower business users to author their own rules, there will inevitably be folks from the IT
side of the organization that interact with business rules at some point — be it for data integration or rule authoring
purposes. One of the tools that software developers and IT professionals often develop a strong affinity for is an
application that displays a line-by-line comparison between two different files, allowing them to see precisely what
changed. Being able to know precisely what you’re changing in an environment (be it configuration files or code) is
important for reducing the potential for errors to slip by. Combining the “Diff” tool with a code repository also allows
for things like partial merges, where only the specific changes you want are included. This combination of comparing
and selectively including changes in an output result is the primary purpose of a Merge tool.

Since many folks have become accustomed to using it in other aspects of their job, it’s only natural that we’d receive
requests for a similar tool that can work with a Rule Application. While that seems like it should be a relatively trivial
thing to accomplish, it is substantially more complex that it would at first appear.

ég WinMerge - [Merge.cpp x 2] - O X
(& File Edit View Merge Tools Plugins Window Help - &8 x
o~
Do a8 T LFREET (4 bt - D AMHQ
@ 2154\ - 2.15.5\ (& Merge.cpp x 2
Location Pane x ' DA Temp\WinMerge\2.15.4\Src\Merge.cpp D:\Temp\WinMerge\2.15.5\5rc\Merge.cpp
filename += timestr; filename += timestr; ~
// Append filename and extension (+ opt // RAppend filename and extension (+ opt

if ((bakPath.length() + filename.length if ((bakPath.length() + filename.length
< MAX_PATH) < MAX_PATH FULL)
| success = TRUE; success = true;
bakPath = paths::ConcatPath (bakPath bakPath = paths::ConcatPath (bakPath
bakPath += T ("."): bakPath += T ("."):
bakPath += ext; bakPath += ext;
if (success) if (success)
success = CopyFile(pszPath.c_str(), {
S—m—8 success = !!CopyFileW (TFile (pszPath
}
if (!success) if (!success)
S5tring msg = strutils::format_ strin String msg = strutils::format strin,,
. o B . M EE B . ——

Unix
NUM

Ln: 913 Col: 5/28 Ch: 2/19 1252{windows-1252)

Difference 30 of 47

Ln: 913 Col: 5/28 Ch: 2/19 1252(windows-1252) Unix

Why not just use my favorite merge tool?

Software code, configuration files, and most of the file types that common comparison tools operate against are
generally fundamentally text files — they simply are interpreted in different ways by the consumer of the file. Because
text is a very simple data type, it’s a straightforward task to build a comparison between two different versions of a file.
Rule Applications, on the other hand, are substantially more complex.

Things start off simple - ruleappx files are compressed archives of the ruleapp file, so can be decompressed into a folder
structure containing a ruleapp file (which is stored as XML). Unfortunately, the resulting XML file is not a simple thing to
deal with. Without going into too much detail, the XML used to store a ruleapp is a an extremely large, dynamically
generated, flattened collection of hierarchical objects that are compiled into the Rule Application based on lookup keys
that may change between environments. As a result, performing a text-based comparison of the XML will provide an
extensive, difficult-to-parse list of changes with lots of false positives, and little to indicate what each changed GUID was
referring to. Once you have a set of differences, merging them together in XML (and ensuring that you have all
dependencies included) would be farily impractical.

« < > » Dift 1. Chang

ines (8 -, firsl file) lo 2 lnes (8 -9, second fle) v

NewRuleApplication v11.xml NewRuleApplication v5.xml

<Entityoef

elds> <Fieldss
<Fieldpef <Fieldoef
= Re

172-efabOcd0l86a”

34 Na
DataT: 0" 343 DataType="string" §¥

522 </Fields>

523 <itascontextversionsettingss fal se</HasContextversionsettingss 345 <Hascontextversiansettingssfalses/Hascontextversionsettingss
346 <cascadedReferencess
347

344 </Fields»

Cascadedreferencenef
Revisi

Publics an="1"
Guid="d7ea74d?-a3be-4d05-0d76-2811d441b2Fa"
<Parent1d>01d0508F-6d2b-4b31-b2cf-7e38F4965117</ParentTd>
<chi 1dI>9ac15bTe-9dLe-40ee-bge5-11ad8be6? 580</chi 1 dId>
<TsTmplici ttrue/TsTnplicit>

</CascadedReterancebats

</Cascadedreferencess

524 </encitypefs 3% </entitybefs

525 </Emtitiess . . L < 357 </entities:

I’m now sufficiently bummed out. What's this post about, then?

After implementing a handful of one-off utilities for customers based on their specific needs (which our ROAD team <
https://www.inrule.com/professional-services/custom-services/> is great at), we identified a set of functionality that
would cover the majority of merge-related use cases that our customers had encountered. We pulled a few bits and
pieces from previous tools, added in an entirely new difference engine and Ul layer, and are now quite pleased to
announce the availability of the InRule irAuthor Merge Extension! Unlike other irAuthor extensions (offered as
unsupported source code), the Merge Extension is offered as a new category of Managed Extension — with available
binaries and installation material.

InRule Merge Extension
Home
Set Set Compare All Undecided Ignored Included
Source = Target =

Rule Applications Actions Display Filter Search Filter

Choose your Source and Target,
and then click Compare

Current Selections

https://www.inrule.com/professional-services/custom-services/

Awesome! What does the extension do?

This may come as a surprise, but... it loads and compares two Rule Apps, shows you the differences, and then allows you
to merge them together. Let’s dive into each of those functions

Load
Both the Source (the version that has changes you want included) and the Target (the old version you want to
update) Rule Applications can be loaded from a .ruleapp or ruleappx file, from any irCatalog instance you have
configured in irAuthor, or can be loaded from the currently open Rule Application.
Home
Set Set Compare Merge
Source ¥ Target~
Current \ctions
~ From File...
U From Catalog...
Compare

Once both Rule Apps are loaded, click the “Compare button, and the comparison engine will “walk the tree” of
the two Rule Applications, hierarchically determining what is different between them. Each difference is then
displayed in a box with a description specific to each object type, with color and font indicating items that were
added to or removed from the Source Rule App.

s InRule Merge Extension - 0 x
Home
Set Set Compare Merge | All Undecided Ignored Included
Source v Target~
Rule Applications Actions Display Filter Search Filter
RuleSet1/ExecuteRuleSet1
x !

Execute Ruleset newRuleSet (newRuleSet) with parameter(s): RuleSetParameter: "my value here"

RuleSet1/ExecuteRestServicel
X!

Execute REST Service Action ExecuteRestService1 on operation RestOperation to populate Field1 using parameters
InputGoesHere (String)="Banana"

RuleSet1/MapDatal

t

Map Data Action MapData1, mapping JSON in Field1 to Field4

RuleSet1/SetValue1/Element

[ea

Calculation (String) with expression:
Fielei2Field4.FieletnewField

Source: NewRuleApplication [C:\Users\dgard..\Docum..\GitHub\InRul..\Rule ..\Merge..\D... Target: NewRuleApplication [C:\Users\dgard..\Docum..\GitHub\InRul..\Rule ..\Merge..\D...

We spent a lot of time focusing on how to make the interface easy to understand given the wide variety of
different object structures in InRule. To that end, we made custom display information for over 100 different
object types, trying to show all relevant information for each in a concise, easy-to-understand structure. For
some data types, this can be as simple a sentence of text, more complex objects may take the form of a table of
data; for Decision Tables, it takes the form of a series of tables — all with the end objective of ensuring you can
tell what each change contains.

Select

Conditions

Test Field1

Display Name Expression

1 <40 Field1 < "40"

2 =2 Field1 = "2

3 >80 Field1 > "80"
Actions

Set Field3

Display Name Action

1 Valuel ValueOfBanana

2 Value2 ValueOfCarrot

ValueOfQrganicCarrot

Field 4.1

Display Name Action

1 17 Option 17

2 18 Option 18
Rows
TestField1 SetField3 Field 4.1
1 >80 Value2 7

18

2 <40 Valuet 17
3 =2 Valuel 17

DataElements/GetExchangeRateData

Name

REST Service
Operation Inputs
Verb

URI Template
Headers

Body Format
Body

Wait for Response
Halt Rule Execution Based on Response Code
Valid Status Code
Number of Retries
Timeout

Cache Duration

ou K

GetExchangeRateData
ExchangeRateService
BaseCurrency: String

Geﬂ
/latest?base=$BaseCurrency$

Xml

True
True
200-299
1

5

3600

Once you've reviewed a change, it’s time to decide if you want it included in the final output of the merge or not
with the slider in the center. As you work through the list of differences, choosing to include or exclude the
change will update the comparison box to show what the final value will be at the end of the merge, allowing
you to easily identify items that you’ve yet to make a decision about. If an item is not explicitly included (IE if
you ignore the slider), it will not be included in the merge.

Home

> V]

Set Set
Source = Target ~

L] X] v

Compare Merge Al Undecided Ignored Included

Rule Applications Actions Display Filter
(2) Entities (0)
Entity1

o P . P

NewEntity

Entity named NewEntity with display name New Entity

Mortgage

Entity named Mortgage with display name Mortgage

Loaninfo

Entity named Loanlnfo with display name Loan Info

PaymentSummary

Payment

Entity named Payment with display name Payment

ExchangeRateData

Source: MortgageCalculator [C\Users\dgard..\InRul..\ROAD ..\Train..\Rule ..\Integ..\202....

InRule Merge Extension

Search Filter

Ignore All Include All

Sy)
=
)
—®
—®

t

I

Target: NewRuleApplication [C:\Users\dgard..\Docum..\GitHub\InRul..\Rule ..\Merge..\D...

Merge

At long last, you’re ready to make magic happen! Once you’ve selected the items you want to include, clicking
on the “Merge” button in the ribbon will apply the selected changes from your Source application and move
them to a working copy of the Target application. After a successful merge, a new instance of irAuthor will open
with the final, merged application, where you can validate everything looks good and save the merged Rule
Application wherever you need to.

I’'m so excited to use it! How do | get it?

Since this is a Managed Extension, you don’t need to download the code and compile it yourself — simply head
on over to our Extension Repository <https://github.com/InRule/irAuthor-
Extensions/tree/master/MergeExtension> and follow the instructions in the “Installation” section.

We can’t wait to hear how you use the extension — comment below and let us know! Find a bug? No problem,
submit a report to support@inrule.com and we’ll take a look.

What’s next?
This extension has a range of potential applications:

- Reviewing pending changes before checking in

- Performing code reviews of previous check-ins

- Validating the updates that will be deployed before Promoting a Rule App

- Merging updates made in two different copies of the same Rule Application

That last potential application might have caused a few ears to perk up — the ability to merge two copies of a
rule application together is one of the prerequisites to enabling another widely-requested piece of functionality:
Branching. While we are not currently in the process of implementing branching, it is on our long-term roadmap
to build out; getting the Merge extension in the wild was the first step in that direction.

Happy Merging!

https://github.com/InRule/irAuthor-Extensions/tree/master/MergeExtension
https://github.com/InRule/irAuthor-Extensions/tree/master/MergeExtension
mailto:support@inrule.com

