
Integrating Rule Apps into your CI/CD Pipeline

Introduction

One question that is regularly brought up during customer training sessions is how to integrate Rule

Applications into a company’s existing Continuous Integration and Continuous Delivery or Deployment

(CI/CD) pipeline. CI/CD has become standard practice in many organizations because of the

opportunities for automation and risk mitigation it provides, and it can be a great idea to include Rule

Applications in that organizational standard.

• Continuous Integration involves automatically running an application through a series of tests

following each code change to ensure that what was checked in did not break any existing

functionality. This is a great way to mitigate the risks around applications that are frequently

updated.

• Continuous Delivery (or Deployment) takes the updated code which was verified in the CI

portion of the process and delivers it to the next stage (generally the next environment along

the line to Production).

InRule offers a variety of ways to manually perform those tasks (irVerify’s Test Scenarios and irCatalog’s

Rule Promotion), but many customers find that they want to automate portions of the process using

functionalities exposed through InRule’s irSDK.

This 2-post series will walk through the process of automating CI/CD of Rule Apps using Azure DevOps

from a few architectural and functional standpoints, and the accompanying GitHub repo

(https://github.com/InRule/DemoRuleCICDPipeline) contains samples that you can use as a reference

while building out that automation for your own organization. While these samples use Azure’s DevOps

(https://dev.azure.com) pipeline, the same concepts will translate to just about any pipeline you may

want to use. If you are using Azure DevOps, I found this (https://docs.microsoft.com/en-

us/azure/devops/pipelines/process/templates?view=azure-devops) to be an excellent resource.

https://github.com/InRule/DemoRuleCICDPipeline
https://dev.azure.com/
https://docs.microsoft.com/en-us/azure/devops/pipelines/process/templates?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/process/templates?view=azure-devops

Part 1: GitHub Push triggered, File-sourced Rule App, irJS compiling pipeline

Scenario:

For the first sample, we’re going to use two simple file-based rule applications (“rule apps”) that target

irJS, each checked into their own folders within a GitHub repository. Each rule app has test suites

checked into the application folder, and the repository also contains several helper executable

applications. Whenever a rule app is checked in, we want to run any tests in the folder against those rule

apps to make sure everything is functioning as expected. If all’s well, we will then want to submit the

rule app to the irDistribution service to compile it into a JavaScript file, and include that file as a build

artifact.

Let’s walk through some key aspects of this pipeline:

Trigger from GitHub Check-in

We want our pipeline to run every time someone checks in a Rule App or test scenario, so we’ll direct

our pipeline to automatically execute whenever a file is changed in a location where those files will be

stored.

Pipeline Templates

While we could hard-code everything in the pipeline, it’s always good practice to make components

reusable. To accomplish this, the pipeline is built using templates, with a parameter passed in that

allows it to execute on the desired rule app. This requires that a consistent naming structure be used

throughout the rule apps in the repository, but it means that adding a new rule app to the pipeline is a

trivial exercise. Note that this structure does mean that all jobs will be run when a trigger occurs.

Helper Applications

Throughout these pipelines, we’re using several different helper console applications that bootstrap

irSDK functionality. To make those available to the pipeline, they are included in the GitHub repo in a

“Helpers” directory. The three pre-built helpers are compiled from the Samples repository

(https://github.com/InRule/Samples/tree/master/Developer%20Samples/CommandLineTools). We’ll

discuss the IrCatalogExtension in part 2.

Licensing irSDK Helper Applications

Those helper applications require an InRule license in order to execute, and since we are not able to run

the InRule Activation Utility on the pipeline host, we’ll need to include a license.xml file to allow the

helper applications to execute successfully. Since we do not want to store our license in the repository

itself, we can instead save it in our Pipeline’s Library as a Secure File, copying that into our build Agent’s

TempDirectory as part of the pipeline. Then, we can copy the testing helper application into the same

TempDirectory to be able to execute without issue.

Run All Test Suites

Once we have all those pieces in place, we’re ready to run tests! Again, in keeping with the foundation

of reusability, we’re going to run a script that iterates through each test suite file in the directory. This

script will automatically run all tests without any hard-coded names. As a side note on this, the Test

Suite Manager in irSDK has some dependencies on full .NET Framework that prevent it from being

compiled as a .NET Core application.

https://github.com/InRule/Samples/tree/master/Developer%20Samples/CommandLineTools

Conditional Next Step

The next task we want to do is compile the rule app using the irDistribution Service, but ONLY if all the

tests executed successfully. To do that, we can make the Packaging job dependent on the successful

execution of the Testing job.

Using Secure Credentials in Execution

Calling the irDistribution Service requires an authentication token to be passed in, which (like the license

file) should not be stored in the GitHub repository. Because this is a simple text string, this token can be

stored in the Library as a Secret variable in a Variable Group and imported into the job.

Creating the Artifact

Once we’ve copied over the Build IrJS Helper application to the same directory we previously placed the

license file, we’re then able to execute the wrapper for the irDistribution Service and save the compiled

irJS file. That can then be published as a Pipeline Artifact to be used down the line as needed.

We Did It!

The full pipeline and GitHub structure of the fileSourced-IrJS-TestAndBuild-pipeline is available at

https://github.com/InRule/DemoRuleCICDPipeline. This is just one example of how these pieces can be

put together, but you can certainly adapt the elements to whatever your needs are and build out a

CI/CD pipeline that give you exactly the functionality you need in your organization.

Stay tuned for part 2, where we’ll cover a pipeline with integrations into irCatalog!

https://github.com/InRule/DemoRuleCICDPipeline

