
Rituals and Chrome Extensions
Let’s talk about rituals.

Now I’m not talking about religious rituals, official services, or
anything so solemn. I’m talking about the everyday type that you
don’t even think about. For example, you probably have a standard
set of activities you do every morning — get up, shower, eat breakfast,
brush your teeth — fairly standard stuff. Mundane as those activities
may seem, that repeated set of behaviors constitutes a ritual — one
which you perform every morning.

Now, you’re probably asking yourself, “why is this guy talking about
rituals involving toothbrushes in a blog about technology?”
Admittedly, that’s a fair question.

Photo courtesy of trippChicago and licensed under Creative Commons

https://medium.com/r/?url=https%3A%2F%2Fwww.flickr.com%2Fphotos%2Ftrippchicago%2F
https://medium.com/r/?url=https%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby%2F2.0%2Flegalcode


One of my ever-present goals is to make life as efficient as possible — 
even (especially!) if that efficiency takes vastly more effort to
implement than it saves. My latest additions to that basket of life-
efficiency-enhancers have stemmed from identifying inefficiencies
in my rituals, and finding ways to streamline them.

Good morning!

Each morning I get up and go through my morning routine. Near the
end (around 6:50am), I check a Chicago Transit Authority (CTA) Bus
Tracker application on my phone to see when the next bus will
arrive. I want to leave the apartment when the next bus is 2–4
minutes away to minimize time waiting idly at the bus stop, while
leaving enough of a buffer that I don’t have to run to catch it. If the
bus is predicted to arrive outside that window, I proceed to mash the
refresh button on my phone until it gives me a number I like.
Unlocking my phone, opening the app, selecting the stop, requesting
data, and then potentially repeating that procedure is not an efficient
way to determine when I should leave.

Cue lightbulb number 1 — a Chrome extension to tell me when to
leave.

I started my foray into Chrome extensions about 6 months ago with a
simple one that added an option to the context menu to identify an
Instagram photo’s URL. It was about as basic as it could be, with no
interface elements besides the single context menu option — but it
exposed me to what was possible with the SDK, and taught me the
process to build and deploy something to the Chrome store. I had
also toyed with the CTA API a while back while looking into building
an Amazon Echo application for CTA bus tracking (which never
panned out) — which gave me both pieces I needed to build an
extension to tell me when to leave.

Route planning

First, I planned out what the app should do. There would be 2
components — one for selecting the stop to track (the user would
initiate tracking by clicking on one of a list of ‘pinned’ stops, and
have the ability to add new pinned stops), and one for displaying the
status of the selected stop. While tracking, I want to know how long



until the next bus comes, how fresh the data is, what bus line I’m
tracking, and when one is almost here.

For the first component, I needed a pretty big working area — there
are well over 100 CTA routes I’d need to show. To support this,
Chrome’s Extension SDK allows you to specify a web page that’s
displayed as a ‘Popup’ when you click on the application’s icon. From
that page, you can execute a javascript method on the background JS
using the Chrome Extension SDK’s getBackgroundPage function — 
allowing the popup UI to call a method to start a timer on the
background to update the icon

Building out the interface to select a stop was quite simple. The
BusTracker API is really well designed; it’s built in such a way that
you can get a list of all bus lines, directions, and stops — each based
on the result of the previous. Once you have the stop ID, you can
request ‘predictions’ about when the next bus will arrive there. It was
simple to build out a series of screens to allow selecting a stop, then
persisting the saved stop IDs to the Chrome synchronized storage
using the Extension SDK.





Getting iconic

For the second component, I knew that I wanted the totality of the
interface required for actively tracking state to be shown through the
icon at the top of the browser window — having to open a new pane
or click on something after tracking has been started would defeat
the whole purpose of the project. The challenge, then, was how to fit
everything into a 19 pixels square area — a ridiculously small amount
of space. For context, that’s roughly the amount of space that 4
letters on this page (in a 2×2 character square) would take up.

Which, at actual size, looks like this



After much mucking about in a 19x19px box in Paint.NET, I came up
with a design that covered what I needed. The background would be
a bus, with a 13x7px windshield. Using a font that took just 3x5px per
number/letter (based on http://www.sum-it.nl/en200351.html), I
would then draw the bus line number inside the windshield of the
background. The ‘freshness’ of the data (or the time until the next
refresh) would be represented by 6 4.4px dots overlaid at the top of
the icon, which fit perfectly into the 19px width, with 1px between
each dot and on either side. When the bus got close, I would turn the
background of the bus’s headlights green (time to go!) — and I would
use the icon’s Badge text (generally used for notifications) to indicate
the number of minutes until the next arrival.

Great! Now… how do I actually make that happen?

Back in the extension’s background javascript, the Extension SDK
allows you to set the icon for the application one of two ways — either
by referencing a static image file, or by building the icon in an
HTML5 Canvas element, and requesting the icon be loaded from a
section of that Canvas. Clearly, to support the notifications being
inside the icon, I’d have to build it up using the latter.

To start, on the canvas, if the headlights were supposed to be green, I
drew green squares in the spot where the headlights would end up. I
then loaded in a background image of the bus, which had
transparent headlights and background (but not windshield — we
want a light background for the numbers). If the headlights needed
to be green, the square I drew in initially would show through the
transparent spots in the Bus image. I created image files for each
digit and letter that was needed (all 3x5px), and named them
appropriately. Based on the number of digits in the bus line (151, 22,
etc), I calculated the pixel position of each character, and loaded the
appropriate images onto the canvas in the appropriate spot. I then
drew little circles along the top to indicate when data will be
refreshed, and set the overlay text to the number of minutes until the
next predicted arrival. Once that was all complete, I requested that
the square of the Canvas into which I’d been drawing be loaded as
the Extension’s icon — and that was that!

https://medium.com/r/?url=http%3A%2F%2Fwww.sum-it.nl%2Fen200351.html%2529%2C


Again, at actual size

Select a pinned stop, and the icon will start refreshing automatically
for 10 minutes, with all the information you need visible at a glance.
Efficient!

The extension is available for free in the Chrome store

Efficiency number one — attained. Stay tuned for part 2!

permalink

. . .

Originally published at blogs.claritycon.com on October 10, 2016.

https://medium.com/r/?url=https%3A%2F%2Fchrome.google.com%2Fwebstore%2Fdetail%2Fchicago-bus-monitor-cta%2Fhgngkjmhchpajdmchbnakllkhcdodgij
https://medium.com/r/?url=http%3A%2F%2Fblogs.claritycon.com%2Fblog%2F2016%2F10%2Frituals-chrome-extensions%2F
https://medium.com/r/?url=http%3A%2F%2Fblogs.claritycon.com%2Fblog%2F2016%2F10%2Frituals-chrome-extensions%2F



